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‘Abstract:

A full-wave analysis is presented for modeling microwave,
nlanar. distributed discontinuities. BY choosing current-
~ensity basis functions that better matih expected singular
behavior of the current density near conductor edges ,
implementing a mode-matching method, and approximating
the distributed discontinuity by a multi-step structure, this
method is found to be more efficient for studying the
chamcterisitics of the distributed discontinuity than similar,
previously-reported methods. A combination of scattering
matrices is used to numerically approximate the behavior of
the distributed discontinuity. Simulation results are given for
some specific illustrations, which exhibit good agreement
with other known work.

I ANALYSIS METHOD

This paper presents an adaptable, full-wave analysis for
accurately determining the performance of planar, distributed
discontinuities at Klgher microwave and millimeter-wave
frequencies. The salient mathematical features of this
analysis are presented. The distributed discontinuity is
represented as a sequence of uniform microstrip lines of
different width joined by abrupt, step-like discontmuities, as
illustrated in Fig. 1 for a linear rnicrostrip taper. The analysis

. . . !.. .

. . . !.. .

13g.1. Representation of a tapered microstrip using
multi-step model

is comprised of three aspects: (1) the full-wave modeling of
dispersion characteristics on the uniform lines between step
discontinuities, (2) the full-wave modeling of each step
.dlscontinuity, and (3) the appropriate cascading of these

models to represent the behavior of the distributed
discontinuity in terms of S parameters. This paper presents
the essential features of these three aspects.

For aspect (l), the spectral domain method is used to
transform field variables and express the lonjritudinal (z-
directed) and transverse (x-direc~ed) electric aid magnekc
fields along the plane of the dielectric-to-air interface shown
in Fig. 2 in terins of longitudinal and t.nansverse cnrrent-
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Fig.2. The cross section of a uniform rnicrostrip

density distributions flowing in conductors at that interface.
These current-density distributions are expanded using
Legendre-polynornial basis functions for the longitudinal
current densities and harmonic functions for the transverse
densities. Legendre polynomials are selected because these
functions more accurately represent the actual current-density
singularity experienced m longitudinal cuments at conductol
edges, even when few basis functions are used.

A Galerkin solution is used to invoke the condition that the
tangential E and H fields are continuous across the dielectric- -
to-air boundaries in Fig. 2 and that the tangential E field is
zero at conductors along the same plane. In this fashion the
problem is cast into the matrix form [Cl [lLB] = O = 1 [AB].
Elements of [C] depend on geometry and material ~arameters
for the particular microstrip configuration. [AB] 1san array
of coefficients which weight the selected Legendre and
harmonic current-density basis functions. The. phase
coefficient b is determined for zerus in the determinant of [Cl
as a function of frec~uency, both for propagating and
evanescent modes. These dispersion characteristics are also
used in the modeling of step chscontinuities,

To understand the treatment used for the step discontinuity,
consider Fig. 3. The full-wave analysis for treating such
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‘! Fig. 4. The scattering matrix formulation for two junctions

Equivalent Waveguide Model
A. UNIFORM, SHIELDED MICROSTRIP LINE
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Fig. 3. An equivalent waveguide model of a microstrip
with an abrupt junction

discontinuides uses boundary reduction [2], wherein more
accurate and efilcient solutions me obtained by assuming that
the incident signal approaches the step from the side with the
narrower microstrip line. The behavior of the input and
output field distributions for each step we reduced to matrix
form using a moment solution that uses modal magnetic
fields to test &ansverse electric field expansions at the
junction and modrd electic fields to test transverse magnetic
field expansions at the junction. The modal fields are
obtained from the solution for the uniform line. A sufficient
number of modes must be used to obtain the desired accuracy
and efficiency. The resulting matrix representation is then
reorganized into a generalized scattering matrix
representation to relate input and output field distributions at
each step junction.

The behavior of the overall distributed junction is then
represented as a sequence of interconnected uniform lines
and step discontinuities. This mathematical treatment is
illustrated by developing the S-parameter representation for
the pair of microstrip step junctions interconnected by a
length of uniform microstrip line of length 1 as depicted in
Fig. 4.

II SIMULATIONS AND NUMERICAL RESULTS

A linear, tapered tnicrostrip discontinuity was selected to
illustrate the effectiveness of the approach described here.
The results presented in the subsequent sections are intended
to benchmark the accuracy and efficiency of each aspect of
the analysis.

To benchmark the treatment of dispersion characteristics for
uniform lines, consider the microstrip cross section shown in
Fig. 5. Even-degree Legendre polynomials were used for the
longitudinal current basis functions and sin(ipx) (i = 1,2, ...)
for the transverse current basis functions, Fig. 5 shows
calculated values of phase coefficient versus frequency for
the fundamental mode and three higher-order modes
compared with well-documented results of Ganguly and
Spielman [3]. Ganguly and Spielman employed a full-wave,
method-of-moments, boundary-element (pulse expansion
functions with point matching) solution. The results
evaluated here employed three Legendre basis functions and
three harmonic functions, The results produced here
demonstrate improved computational efficiency compared
with earlier work as described in the discussion section of
this paper. Fig. 6 shows convergence results for the

Fig.5. Dispersion chamcteristics of eigenmodes in a
uniform microstrip (w=O.635rntn, a=6.35mm,

h=l 1.43mxu, s=l.27mm, Sr = 8.875) — by
Chen&Spielmm, _. _. _ by Gartguiy&Spielman [3]
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longitudinal current density as the number of Legertdre basis
functions is increased. Fig. 7 shows longitudinal current
density for the fundamental and first higher-order mode
computed using only five Legendre basis functions.

B. DISTRIBUTED DISCONTINUITY - TAPERED
MICROSTRIP JUNCTION

The computed performance for the tapered microstrip line
depicted in Fig. 1 is dependent upon the number of uniform

Fig. 6 Nonnrdized longitudhrafcurrentdisuibutionsfor
fundamental mcde vs the number of bask functions(w=O.635mm,
a=6.35mm, h=12.7 mm, d=l.27mm, Er=10, f=8GHz)

***** num~r of hgen~ basis timctions=2--numtx?r Of

Legendre basii fnnctions=3, -Q- number of Legendre basis
functiorrs=l

Fig. 7, Normalized longitudinal current dkibutions for
fttndarnentd mode and the fust higher order mode(w=0.635mm.
x6.35mm, h=12.7mm, d=l .27mm, EP1O, f=12GHz, harmonic

tennz=160, the number of Legendro bask fmrctions=5)— the

fmrdamentaf modes,----- tbe fust higher order mode.

microstrip line sections used to represent the tapes, the
number of harmonic terms used to represent the transverse
current density on the uniform lines, the finite number of
modes (some propagating, some evanescent) employed to
represent behavior between step junctions, and the number of
Legertdre basis functions used to represent the longitudinal
current density on the uniform lines. Pigs. 8 -11 show
convergence results for S11 (or VSWR) as each of these
quantities is varied, respectively. Fig. 12 show simulation
results of the magnitude of SI I versus frequency for a
linearly tapered micrmtrip compared with corresponding
results of Rao and Kosta [4]. Information will also be
presented about the phase behavior of S11 for this simulation.

Fig. 8. Convergence tezt of I S11 I vs the numbar of sections

(wa=0.25mm, wb=O.635mm, a=6.35mm, h= 12.7mm,

d=l.27mm, L=20mm, EP1O, f=4.5GHz, harmonic terms=140,

the number of modes=:2,the number of Legenrtrebasis
fnnctions=3) for a microstrip taper

number of harmonic terms

Fig. 9. Convergence testofIS11 I w the number of

harmonic terms (wa=0.25mm, wb=0,635mm,

a=6.35mm, h=12.7mm, d=l,27mm, L=20mm, EF1O,

f=4.5GHz, number of seetionz=8, tho number of
modes=2, the number of Legendre bozis functkms=3)
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number of modes (’p+)

Fig. 10. Convergencetestofl Slllvsthe numberof
modes (wa=0.25mm, wb=O.635mm, a=6.35mm,

h=12.7mm, d=l.27mm, L=20mm,q=lO, f=4.5GHz,
numberof aections=8,theharmonicterms=140,the
number of basis functions=3)

III.

t~::: $’
1 z 3 4, s

number of Legendm basis functions

Fig. 11. Convergence test of VSWR vs the number of
Legendre basis functions (wa=0.25mm, w&O.635mm,

a=6.35mm, fr=12.7mm, d=l.27mm, L=20mm, q=lO,

f=4.5GHz, number of sections=8, the harmonic terme140, the
number of modW-2)

DISCUSSION

The accuracy and efficiency of each of the three aspects of
the analysis must be considered. The roots of the
determinant of the [C] matrix described in section I exhibit
distinct values for true characteristic modes. The accuracy of
computed values for these modes is typically within about
5% compared with well-documented results determined using
other methods [3]. It is noteworthy that it takes just one-fifth
the computation time to generate dispersion characteristics
using the approach described here compared with those
described in [5]. Typically, only two or three modes are
needed in the region of the uniform line sections to attain
reasonable accuracy.

Simulation results for the linearly tapered microstrip
discontinuity depend on: the number of uniform sections of
transmission line used in the model (and corresponding
number of abrnpt steps); the number of modes taken on the
uniform sections; the number of Legendre polynomird basis
functions; the number of harmonic basis functions.
Convergence results are presented which assess the
sensitivity of overall results (viz. S11 versus frequency) to
each of these parameters. Reasonable results are
demonstrated for the performance of the linearly tapered
microstrip discontinuity up to 15 GHz using: three to five
Legendre basis functions, 140 harmonic basis functions, eight
sections of uniform lines, and two modes on uniform line
section where the line width is 0.25 mm at the narrow end of
the taper and 0.635 mm at the wide end. It is found that the
computation of S1I at one frequency (viz. 4 GHz) takes 25
minutes and requires about 5.3 MBytes of storage on a SUN
SPARCstation model 10.

REFERENCES

[1] T. Itoh, and R. Mittra, “Spectral domain approach for
calculating the dispersion characteristics of microstrip lines,”
IEEE Trans. Micr. Th. TechS., Vol. 21, pp. 496-9, Jul. 1973.
[2] A. Wexler, “Solution of waveguide discontinuities by
modal analysis,” IEEE Trans. Micr. Th. TechS., Vol. 15, pp.
508-17. Sem 1967.
[3] K.’Gdguly and B. Spielman, “Dispersion characteristics
for arbitrarily-configured transmission media,” IEEE Trans.
Micr. Th. Teds., Vol. 25, pp. 1138-41, Dec. 1977.
[4] K. Suryanarayana Rao and S. Kosta, “On tapered
trticrostrip transmission lines,” Asia Electronics Union, Vol.
7, No. 1, 1974.
[5] Q. Xu and K. Webb, “Study of modal solution
procedures for microstrip step discontinuities,” IEEE Trans.
Micr. T/L Teds., Vol. 37, No. 2, pp. 381-7, Feb. 1989.

am! (

Fig. 12 Simulation resutts of I S11 I as a functions of frequency

for tbe shown mieroarrip with Iapereddiaeondmritiea (wa=0.25mm,

wb==.635mm, a=6.35mm, h=12.7mm, d= L27mm, f_=20mm,

eFIO, harmonic terms=140, the numbexof basis timctions=3, tbe

number of modes=2, the number of sectiona=ll) — Ctren &

Spiefmsm, -Q-by Rao & Kosta.
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