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‘Abstract:

A full-wave analysis is presented for modeling microwave,
planar, distributed discontinuities. By choosing current-
density basis functions that better match expected singular
behavior of the current density near conductor edges ,
implementing a mode-matching method, and approximating
the distributed discontinuity by a multi-step structure, this
method is found to be more efficient for studying the
characterisitics of the distibuted discontinuity than similar,
previously-reported methods. A combination of scattering
matrices is used to numerically approximate the behavior of
the distributed discontinuity. Simulation results are given for
some specific illustrations, which exhibit good agreement
with other known work.

1 ANALYSIS METHOD

This paper presents an adaptable, full-wave analysis for
accurately determining the performance of planar, distributed
discontinuities at higher microwave and millimeter-wave
frequencies. The salient mathematical features of this
analysis are presented. The distributed discontinuity is
represented as a sequence of uniform microstrip lines of
different width joined by abrupt, step-like discontinuities, as
illustrated in Fig. 1 for a linear microstrip taper. The analysis
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Fig.1. Representation of a tapered microstrip using
multi-step model

is comprised of three aspects: (1) the full-wave modeling of
dispersion characteristics on the uniform lines between step
discontinuities, (2) the full-wave modeling of each step
discontinuity, and (3) the appropriate cascading of these
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models to represent the behavior of the distributed
discontinuity in terms of S parameters. This paper presents
the essential features of these three aspects.

For aspect (1), the spectral domain method is used to
transform field variables and express the longitudinal (z-
directed) and transverse (x-directed) electric and magnetic
fields along the plane of the dielectric-to-air interface shown
in Fig. 2 in terms of longitudinal and transverse current-
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Fig.2. The cross section of a uniform microstrip

density distributions flowing in conductors at that interface.
These current-density distributions are expanded using
Legendre-polynomial basis functions for the longitudinal
current densities and harmonic functions for the transverse
densities. Legendre polynomials are selected because these
functions more accurately represent the actual current-density
singularity experienced in longitudinal currents at conductoz
edges, even when few basis functions are used.

A Galerkin solution is used to invoke the condition that the
tangential E and H fields are continuous across the dielectric-
to-air boundaries in Fig, 2 and that the tangential E field is
zero at conductors along the same plane. In this fashion the
problem is cast into the matrix form [C] [AB] =0 =1 [AB].
Elements of [C] depend on geometry and material parameters
for the particular microstrip configuration. [AB] is an array
of coefficients which weight the selected Legendre and
harmonic current-density basis functions. The, phase
coefficient b is determined for zeros in the determinant of [C]
as a function of frequency, both for propagating and
evanescent modes. These dispcrsion characteristics are also
used in the modeling of step discontinuities.

To understand the treatment used for the step discontinuity,
consider Fig. 3. The full-wave analysis for treating such
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Fig. 3. An equivalent waveguide model of a microstrip
with an abrupt junction

discontinuities uses boundary reduction [2], wherein more
accurate and efficient solutions are obtained by assuming that
the incident signal approaches the step from the side with the
narrower microstrip line. The behavior of the input and
output field distributions for each step are reduced to matrix
form using a moment solution that uses modal magnetic
fields to test transverse electric field expansions at the
junction and modal electric fields to test transverse magnetic
field expansions at the junction. The modal fields are
obtained from the solution for the uniform line. A sufficient
number of modes must be used to obtain the desired accuracy
and efficiency. The resulting matrix representation is then
reorganized into a generalized scattering matrix
representation to relate input and output field distributions at
each step junction.

The behavior of the overall distributed junction is then
represented as a sequence of interconnected uniform lines
and step discontinuities. This mathematical treatment is
illustrated by developing the S-parameter representation for
the pair of microstrip step junctions interconnected by a
lengt‘il of uniform microstrip line of length 1 as depicted in
Fig. 4.

IO SIMULATIONS AND NUMERICAL RESULTS

A linear, tapered microstrip discontinuity was selected to
illustrate the effectiveness of the approach described here.
The results presented in the subsequent sections are intended
to benchmark the accuracy and efficiency of each aspect of
the analysis.
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Fig. 4. The scattering matrix formulation for two junctions

A. UNIFORM, SHIELDED MICROSTRIP LINE

To benchmark the treatment of dispersion characteristics for
uniform lines, consider the microstrip cross section shown in
Fig. 5. Even-degree Legendre polynomials were used for the
longitudinal current basis functions and sin(ipx) i=1, 2, ...)
for the transverse current basis functions. Fig. 5 shows
calculated values of phase coefficient versus frequency for
the fundamental mode and three higher-order modes
compared with well-documented results of Ganguly and
Spielman [3]. Ganguly and Spielman employed a full-wave,
method-of-moments, boundary-element (pulse expansion
functions with point matching) solution. The results
evaluated here employed three Legendre basis functions and
three harmonic functions. The results produced here
demonstrate improved computational efficiency compared.
with earlier work as described in the discussion section of
this paper. Fig. 6 shows convergence results for the
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Fig.5. Dispersion characteristics of eigenmodes in a
uniform microstrip (w=0.635mm, a=6.35mm,
h=11.43mm, s=1.27mm, &; = 8.875) — by

Chen&Spielman, _. _. _ by Ganguly&Spielman [3]



longitudinal current density as the number of Legendre basis
functions is increased. Fig. 7 shows longitudinal current
density for the fundamental and first higher-order mode
computed using only five Legendre basis functions.

B. DISTRIBUTED DISCONTINUITY - TAPERED
MICROSTRIP JUNCTION

The computed performance for the tapered microstrip line
depicted in Fig. 1 is dependent upon the number of uniform
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Fig. 6 Normalized longitudinal current distributions for
fundamental mode vs the number of basis functions(w=0.635mm,
a=6.35mm, h=12.7 mm, d=1.27mm, g; =10, f=8GHz)
wks+knumber of Legendre basis functions=2———number of
Legendre basis functions=3, ——-— number of Legendre basis
functions=4
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Fig. 7. Normalized longitudinal current distributions for
fundamental mode and the first higher order mode(w=0.635mm,
2=6.35mm, h=12.7mm, d=1.27mm, &=10, f=12GHz, harmonic
terms=160, the number of Legendre basis functions=5)—— the
fundamental modes, ~—- the first higher order mode.

microstrip line sections used to represent the tapes, the
number of harmonic terms used to represent the transverse
current density on the uniform lines, the finite number of
modes (some propagating, some evanescent) employed to
represent behavior between step junctions, and the number of
Legendre basis functions used to represent the longitudinal
current density on the uniform lines, Figs. 8 -11 show
convergence results for S11 (or VSWR) as each of these
quantities is varied, respectively. Fig. 12 show simulation
results of the magnitude of Si1 versus frequency for a
linearly tapered microstrip compared with corresponding
results of Rao and Kosta [4]. Information will also be
presented about the phase behavior of S11 for this simulation.
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Fig. 8. Convergence test of | 11 1 vs the number of sections
(w3=025mm, wy=0.635mm, a=6.35mm, h=12.7mm,
d=1.27mm, L=20mm, =10, f=4.5GHz, harmonic terms=140,

the number of modes:=2, the number of Legendre basis
functions=3) for a microstrip taper
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Fig. 9. Convergence test of | $11 | vs the number of
harmonic terms (wa=0.25mm, wi=0.635mm,
2=6.35mm, h=12.7mm, d=1.27mm, L=20mm, &;=10,

f=4.5GHz, number of sections=8, the number of
modes=2, the number of Legendre basis functions=3)
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Fig. 10. Convergence test of | S11 | vs the number of
modes (wg=0.25mm, w=0.635mm, a=6.35mm,
h=12.7mm, d=1.27mm, L=20mm, g=10, f=4.5GHz,

number of sections=8, the harmonic terms=140, the
number of basis functions=3)
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Fig. 11. Convergence test of VSWR vs the number of
Legendre basis functions (wa=0.25mm, wp=0.635mm,
a=6.35mm, h=12.7mm, d=1.27mm, L=20mm, g=10,

£=4.5GHz, number of sections=8, the harmonic terms=140, the
number of modes=2)

HI. DISCUSSION

The accuracy and efficiency of each of the three aspects of
the analysis must be considered. The roots of the
determinant of the [C] matrix described in section I exhibit
distinct values for true characteristic modes. The accuracy of
computed values for these modes is typically within about
5% compared with well-documented results determined using
other methods [3]. It is noteworthy that it takes just one-fifth
the computation time to generate dispersion characteristics
using the approach described here compared with those
described in [S]. Typically, only two or three modes are
needed in the region of the uniform line sections to attain
reasonable accuracy.
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Simulation results for the linearly tapered microstrip
discontinuity depend on: the number of uniform sections of
transmission line used in the model (and corresponding
number of abrupt steps); the number of modes taken on the
uniform sections; the number of Legendre polynomial basis
functions; the number of harmonic basis functions.
Convergence results are presented which assess the
sensitivity of overall results (viz. 811 versus frequency) to
each of these parameters. Reasonable results are
demonstrated for the performance of the linearly tapered
microstrip discontinuity up to 15 GHz using: three to five
Legendre basis functions, 140 harmonic basis functions, eight
sections of uniform lines, and two modes on uniform line
section where the line width is 0.25 mm at the narrow end of
the taper and 0.635 mm at the wide end. It is found that the
computation of S11 at one frequency (viz. 4 GHz) takes 25
minutes and requires about 5.3 MBytes of storage on a SUN
SPARCstation model 10.
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Fig. 12, Simulation results of | 11 | as a functions of frequency
for the shown microstrip with tapered discontinuities (wg=0.25mm,
w=0.635mm, a=6.35mm, h=12.7mm, d=1.27mm, L=20mm,
€r=10, harmonic terms=140, the number of basis functions=3, the
number of modes==2, the number of sections=§) Chen &
Spielman, ——— by Rao & Kosta.




